12 research outputs found

    Large scale quantum simulations: C_60 impacts on a semiconducting surface

    Full text link
    We present tight binding molecular dynamics simulations of C_60 collisions on the reconstructed diamond(111) surface, carried out with an O(N) method and with cells containing 1140 atoms. The results of our simulations are in very good agreement with experiments performed under the same impact conditions. Furthermore our calculations provide a detailed characterization of the microscopic processes occuring during the collision, and allow the identification of three impact regimes, as a function of the fullerene incident energy. Finally, the study of the reactivity between the cluster and the surface gives insight into the deposition mechanisms of C_60 on semiconducting substrates

    Towards a Linear-Scaling DFT Technique: The Density Matrix Approach

    Full text link
    A recently proposed linear-scaling scheme for density-functional pseudopotential calculations is described in detail. The method is based on a formulation of density functional theory in which the ground state energy is determined by minimization with respect to the density matrix, subject to the condition that the eigenvalues of the latter lie in the range [0,1]. Linear-scaling behavior is achieved by requiring that the density matrix should vanish when the separation of its arguments exceeds a chosen cutoff. The limitation on the eigenvalue range is imposed by the method of Li, Nunes and Vanderbilt. The scheme is implemented by calculating all terms in the energy on a uniform real-space grid, and minimization is performed using the conjugate-gradient method. Tests on a 512-atom Si system show that the total energy converges rapidly as the range of the density matrix is increased. A discussion of the relation between the present method and other linear-scaling methods is given, and some problems that still require solution are indicated.Comment: REVTeX file, 27 pages with 4 uuencoded postscript figure

    Basis Functions for Linear-Scaling First-Principles Calculations

    Full text link
    In the framework of a recently reported linear-scaling method for density-functional-pseudopotential calculations, we investigate the use of localized basis functions for such work. We propose a basis set in which each local orbital is represented in terms of an array of `blip functions'' on the points of a grid. We analyze the relation between blip-function basis sets and the plane-wave basis used in standard pseudopotential methods, derive criteria for the approximate equivalence of the two, and describe practical tests of these criteria. Techniques are presented for using blip-function basis sets in linear-scaling calculations, and numerical tests of these techniques are reported for Si crystal using both local and non-local pseudopotentials. We find rapid convergence of the total energy to the values given by standard plane-wave calculations as the radius of the linear-scaling localized orbitals is increased.Comment: revtex file, with two encapsulated postscript figures, uses epsf.sty, submitted to Phys. Rev.

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Maximally-localized generalized Wannier functions for composite energy bands

    Full text link
    We discuss a method for determining the optimally-localized set of generalized Wannier functions associated with a set of Bloch bands in a crystalline solid. By ``generalized Wannier functions'' we mean a set of localized orthonormal orbitals spanning the same space as the specified set of Bloch bands. Although we minimize a functional that represents the total spread sum_n [ _n - _n^2 ] of the Wannier functions in real space, our method proceeds directly from the Bloch functions as represented on a mesh of k-points, and carries out the minimization in a space of unitary matrices U_mn^k describing the rotation among the Bloch bands at each k-point. The method is thus suitable for use in connection with conventional electronic-structure codes. The procedure also returns the total electric polarization as well as the location of each Wannier center. Sample results for Si, GaAs, molecular C2H4, and LiCl will be presented.Comment: 22 pages, two-column style with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_wan

    Real-Space Mesh Techniques in Density Functional Theory

    Full text link
    This review discusses progress in efficient solvers which have as their foundation a representation in real space, either through finite-difference or finite-element formulations. The relationship of real-space approaches to linear-scaling electrostatics and electronic structure methods is first discussed. Then the basic aspects of real-space representations are presented. Multigrid techniques for solving the discretized problems are covered; these numerical schemes allow for highly efficient solution of the grid-based equations. Applications to problems in electrostatics are discussed, in particular numerical solutions of Poisson and Poisson-Boltzmann equations. Next, methods for solving self-consistent eigenvalue problems in real space are presented; these techniques have been extensively applied to solutions of the Hartree-Fock and Kohn-Sham equations of electronic structure, and to eigenvalue problems arising in semiconductor and polymer physics. Finally, real-space methods have found recent application in computations of optical response and excited states in time-dependent density functional theory, and these computational developments are summarized. Multiscale solvers are competitive with the most efficient available plane-wave techniques in terms of the number of self-consistency steps required to reach the ground state, and they require less work in each self-consistency update on a uniform grid. Besides excellent efficiencies, the decided advantages of the real-space multiscale approach are 1) the near-locality of each function update, 2) the ability to handle global eigenfunction constraints and potential updates on coarse levels, and 3) the ability to incorporate adaptive local mesh refinements without loss of optimal multigrid efficiencies.Comment: 70 pages, 11 figures. To be published in Reviews of Modern Physic

    Untersuchungen ueber das Verhalten phosphathaltiger Schlaemme unter anaeroben Bedingungen

    No full text
    TIB: RN 7868 (11)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Mixed-Basis Scheme for DFT Calculations

    No full text

    Efficient Linear-Scaling Density Functional Theory for Molecular Systems

    Full text link
    Despite recent progress in linear scaling (LS) density function theory (DFT), the computational cost of the existing LS methods remains too high for a widespread adoption at present. In this work, we exploit nonorthogonal localized molecular orbitals to develop a series of LS methods for molecular systems with a low computational overhead. High efficiency of the proposed methods is achieved with a new robust two-stage variational procedure or by replacing the optimization altogether with an accurate nonself-consistent approach. We demonstrate that, even for challenging condensed-phase systems, the implemented LS methods are capable of extending the range of accurate DFT simulations to molecular systems that are an order of magnitude larger than those previously treated
    corecore